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1. Solve, for 0 < x < 360°, the equation
2cos2x = Tcosx
giving your solutions to one decimal place.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(©))

L 2 cos(2%) = 7 cos(x0)

cost(A) - sinZ(A)
cos? (R) = (1 - cos? (AY)
2 cos? (A - |

OSING DOURLE  _, cos (2A)
ANGLE FORMULAC

TR

2 (22 (A =\ = Tewa(x)

Heosr () -2 = T os(x)

¢ = s (%)
et -Je-2 =0
(ber)e-2D =0
c=-1 v
H >§ wjedk ()= 2L

0> -\ £ eer(x) &

s os(x 3 = -\
m
s ) x= 104.5° . 966.5°
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2. A scientist monitored the growth of bacteria on a dish over a 30-day period.

The area, Nmm’, of the dish covered by bacteria, ¢ days after monitoring began, is
modelled by the equation

log,,N = 0.0646¢ + 1.478 0<r<30
(a) Show that this equation may be written in the form
N=ab' |

where a and b are constants to be found. Give the value of a to the nearest integer
and give the value of b to 3 significant figures.

“4)

(b) Use the model to find the area of the dish covered by bacteria 30 days after monitoring
began. Give your answer, in mm’, to 2 significant figures.

2)

2.00 log N = 0.06U6t + (.41

log rules : Wy b=C = a=b

N= oot

(0.08UEE +1.478
10 RN

0.0646¢t 21478
N = |0 x\Q\

O o wooured:
= (30.06.)(100%)" &3 gf
- 20(1.16)°
B N, = 0« 1163

= ?_516 W\W\2 = 1600 ‘\MN\.?' (Q. Sg-)
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Figure 1
Figure 1 shows a sketch of a curve with equation y = f(x) where

2x+3

f(x) = x> £
Vax -1 4

(a) Find, in simplest form, f’(x).

C))
(b) Hence find the range of f.
3
N x) = +
4y -\
VR [P VA
w Y\M{’O( : \5= u o _d;lé___ = dx ax
differamtioking, v dx vz
u = 2')(‘\'?) @ = 2
dx
V= (awx-\)1 dv = sz 4w (ux-)"% = 2 (yw-)2
dx

£y =((2e =D U2) — (25 2Y2 (U YV 7)
(( O =) l'7-) &
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Question 3 continued

wioly = U= = 2(9wx®)
tavougia oy (U =)
(Lx-NE

= %X -2 —ux—6 .- ux-38
Ure-1)*2 (b2

Ronge - ol possivle volues e} £0X)

3? Mg, i§ when £\ =9 -
L\X—S = 0
(L)%
\ L‘X-% =O
ol | . . ~x )
MO ok x=2
o [T vodue
\3"’ 2(?—) + % = _7_. = ﬁ
Ju(2) - | V7

. ro\u\%ee% Ix) & ok £0O S ollooys BOpRr Ao wmin.

£\ » 17
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y=1x)

S
=V

Figure 2
Figure 2 shows a sketch of part of the graph with equation y = f(x) where

fx) =21 — 2|2 — x| x>0

(a) Find ff(6)

2
(b) Solve the equation f(x) = 5x

2
Given that the equation f(x) = £, where £ is a constant, has exactly two roots,
(c) state the set of possible values of k.

2

The graph with equation y = f(x) is transformed onto the graph with equation y = af(x — b)
The vertex of the graph with equation y = af(x — b) is (6, 3).
Given that ¢ and b are constants,

(d) find the value of a and the value of 5.
2

4.8 £0(¢) = 21-2|2-%]
L) - Je(ggm\

Y= n-212-6] - 2(eE) - $013)
= \3 = 2\—'2.\7_")3)

= -\
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Question 4 continued <

@ {-‘(K\— 2%

Gpo A= Y= U =2(2-%) = 22+ 1]
——y=20-2(-(-2) = - 2% +2%5
\ 7K
3= wWe oo seo. dok  u= S

woseds L) one — wwen
Y= —2%¥25

Q= L?.QL‘\’ch

Tx = 25 w =25
=

C)The opeun lines weprosont soma pssibitities, o Hae
9/\.. R

Soi= g u=2(2K) = 2%+ )]
N

T Se——y-2-2(01) < -2 a2

N\

N

For different volues o k , thare ove diff wo. o) Solutions

> L0 nfrtedks wille e y- oS
L oy= N-=2]2- (0| =

S MOX pelink & (RKseehion \oekwean

2nU+ V] = -2 ¥25 J. WX G (1,2\3
G = 8

J

X = 2
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Question 4 continued

KW < 7 > e | RSOV widin
pout o} (K
* W |74 Kk €7)
L y=l s wida Lok Duxh
9 §00 = 2 poids o) infensettion

Fwwa, v 7 2\
Ly =K bso,% woove e MAX  Poimt

ML o o pouats
wersethion %
T ok U=2)
114 WL<9) Mane 13 eX0CHy \ pounk
™ °’8’ Undex Sehon ok e
ok K=17 WAOLY P@w\x
e o L
pounts
@ Y = AL(‘K:&)\
’«d&» T towmslokion
S
<ol fockor o Auougin .

paraliek +o y wthor { )
(2,9_\3 —  (2+b, a(al))
= (6, 2)
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5. (a) Show that

sin3x = 3sinx — 4sin’x OO/))
“4) g
(b) Hence find, using algebraic integration, ;
Jssin3xdx ;
0 | :—_:i
4) g
5.0)| USING COMPOUND _, sin (A +8) = s () cos (@) -
ANGLE EDRMULAE + 003 (A) s (8)
cos(Ax®) = cs(®)eos (B)
— sin(A)sin () U
(@)
sin(3w) = sin (25¢ + %) g
=
gin (2 +20) = sin(25¢) cos () + sin () e’ (2%) G
=
sin (23) = 2.sin () eos () . i
08 (2%) = o)~ () = (1- 82 () - St (%) i
=

= |- 282 ()
- (3 = @sn)eos (N (G + s (1= 25w ()

= 25000 w0 () + () — 2 513 (O

= 2sin () (1 -sn? (%)) + s (%) = 2 5103 ()

"

280 (%K) = 2600 () + () = 2 53 (0

= 3sin (%) - & s’ (X)
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Question S continued a,
(o8

T
Q S * s> () dx
0

sin(23) = 2 sin (O - usnd ()

() = 33 GO - sin (3%)
O

/3
f "E\' ( e (1) - s‘m(%x\) ax

o

\

_\L_‘ [—Bcos () + Agcos(?ﬂd]%

O

1]

! ( -3cas () + ycos (4 + 3 sl -%cos(s(o\))

5lg-52y) <5 (3) - 2

Q5

(Total 8 marks)
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Figure 3
Figure 3 shows a sketch of curve C, with equation y = 5¢""' +3
and curve C, with equation y = 10 — x*
The point P lies on C, and has y coordinate 18

(a) Find the x coordinate of P, writing your answer in the form Ink, where £ is a constant
to be found.

3
The curve C, meets the curve C, at x = a and at x = f, as shown in Figure 3.

(b) Using a suitable interval and a suitable function that should be stated, show that to
3 decimal places a =1.134

A3)

The iterative equation
x ., =—7-5e""

is used to find an approximation to .
Using this iterative formula with x, = -3

(c) find the value of x, and the value of S, giving each answer to 6 decimal places.

3)
6.0) €5 y=5e*" +3
Pycoordinde = 1R = 50 '+3 - Ge* ' - g

e =32
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Question 6 continued

N\ g %,
-1 = In ()
% = W)+

tl(JoL%s = log b + g, = Log,, (be)

v In()=\
%x = (23 + WK

2= \n(2e)
) C,=C >  5X'3-10-%?
O sex exprestion to 0 : 7—%2-5 ‘= O
PO = 7-n*-ge*

To Show ol = [13Y we Wawe o thow Hhawe's o Sign tadinge

£(1.1349) = -0.0069] gvain ok
SigN dhamge & £ &
£(1.1225) = 0.00l| LomdinuQud bokuweon
e Yoo
S Aae Yook o UQs bodueen 1.1235% g2 11345
© 4o 3d.p. 113y
é) x“,)_\ == \|7—5Q,K“—‘ ==
Ky = W, = —dT-5*""

=_[7-58e 27T = - (T-5¢% = -9 .13
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Question 6 continued

To fnd e volue & B comedk fo 6 dp. |

=~ \

Ny = —2. 6206253 30 W ot~
- -2.6203355
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Wy

b

.

Xg = —2.620320 4

B= -2.620320

A = -2.620330 2
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7. (a) Express cosx + 4sinx in the form Rcos(x —a) where R > 0 and 0 < a < z

Give the exact value of R and give the value of «, in radians, to 3 decimal places.

&)
A scientist is studying the behaviour of seabirds in a colony.

She models the height above sea level, H metres, of one of the birds in the colony by
the equation

24
H= 0<r<65
1 (1
3+ cos| —t |+ 4sin| —¢
2 2

where ¢ seconds is the time after it leaves the nest.
Find, according to the model,

(b) the minimum height of the seabird above sea level, giving your answer to the

nearest cm,
(2)
(c) the value of 7, to 2 decimal places, when H = 10
“4)
7-® Cos o + Usinx k>0
o0co < “'1.
¢ cos (w-ot) & using compowd, ouncje formulog
L cos (A-8) =
S (cosx cos ol + givx &\(\0() crAERB + SnA sind

L CompPowre. exqomded exgrassion 4o Qiven
Reos 08 of + R vk sinol = eod % + Usinx

Reosol = KSMO(:Q,

2 '\'l -
AS0l < funol = 4 | (et (@snog)? FRIINA
/R’coso( | . ity
= 1.326 | = R (cotocrsn?ol) = R2 (V)
| = 4% 4 y?
! | L Qe \T QR=x{17

20

E \»Qx\’c\/\o&
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Question 7 continued

= 24 <k &
D H 3+cos(_t\+l—\s'mk§\ o=t s

2 \2b

CDS(%\-\' usin (%) = {17 cos (£ -1.326)

H = 24
2 1 17 cos(%-\.szeB

Hoon Wk ottur  whon, e dunomiunoder hos B8 mox vodue
o\ & cog(%— 1.226) <)
-7 & m({c?__-\-'s%\ <V
- wox Volue oy donominedor = 34V
Houiw = 28 = 23.37 wm
R 2 3\7
¢) wwn H =10

24 = (O
2 5 d11 cos(*ci—\.sze\

24 = 20 + \QJ\T cog(g?__—\-%')_e\

os(£-1.226) = =6 _ _—3{]
2 \odv] S

t=2(co§'(—2%fl_3 +\.?>1€)—_- 6. s
o)
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8. (i) The curve C has equation y = g(x) where

(x) = " sec2x LA x < z
£ 4 4

(a) Find g'(x)
(2)

(b) Hence find the x coordinate of the stationary point of C.
3

(i1) A different curve has equation

x = In(sin y) O<y<%
Show that
by _ &
dx f(x)

where f(x) is a function of e* that should be found.

“4)

B ® 900 = e sec(2x) Texcq
PRODUCT RULE @ y= v y'= WV + uv
U = st du = ?)sz
K
V= gec (2%) g\_\i = 2 see(29) £on (200
g4

o (%) = (3@31)@& (2 + (e?* \(23@(2%\ ’co.y\@_q&

= 207020 (D) & 2 cec (AK) o (2

b A sobionony gy = o/ (W) =0
270 (D) & 2e™ e (M) (@) = O

e gee (1) (3 + ?.&on(').x\\ =0

24 RN N O
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Question 8 continued

M # 0 e (2%) #£0

3 4+ 240 (2%) = ©

ton (2%) = -5
2
= -0Q.44a| - < < K
0 4
@ % = Wn(sing)
CHAIN QULE = dy - dy . du
d 4 dx

V = Siny d\é = g U

x= nlsing) = W(v) duw = 4

v v
= dn o AV
0\\5 av d\j
) V " S\V\.\S

= _.\’_— e = __‘_

= SWy
X \n (siny) =

gw\kb
sy = {1-5inty = {1-e2*

Cdy o sy o e
d (osy J 1%

J
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9. (a) Given that
—x3 =
x* = x3 —10x% + 3x — 9 2L py 0 > 3
x2—x-12 x—4
find the value of the constant P and show that O = 5
C))
The curve C has equation y = g(x), where
4_ 3 _ 102 _
g(x):x x 10+ 3 -9 -3<x<35 xelR

x2—-x-12

(b) Find the equation of the tangent to C at the point where x = 2
Give your answer in the form y = mx + ¢, where m and c are constants to be found.

©))

vA
C
R
>
0 2 X
Figure 4

Figure 4 shows a sketch of the curve C.
The region R, shown shaded in Figure 4, is bounded by C, the y-axis, the x-axis and the
line with equation x =2

(c) Find the exact area of R, writing your answer in the form a + bIn2, where a and b
are constants to be found.

C))

A.0) 24 -2C-10%*33%-9 = x2+° + Q ()0-3
4

‘x,’- w -\2 7"

Vady SIH1 NI 311dM LON i ;”00

28

P 6 5 75 8 R A 0 2 8 3 2

VIHY SIHLNEILIIM LTONOG

VIV SIHENEI LM ION Od



. . (\y
Question 9 continued %

%
N
xt + 2 <
W %-\L | wH —x 10+ 2% -9
x =23 123

_ 99 + %% -9
2% — 2% - 24
Sx. + 19

Lo 10%Fi 39 . p G2 RSy & A )
wr-w -\2 *2-%-\2

= ot +2 + 5(x¥3)
(%= 3y

= ‘)L2+2 +_5_ (972‘]
x4

D) 9)'()0 =dd_ (%232 &+ S(x—q\")
X

= 2% - 5 (-2
copodink g € ok =2 - 2(2) -

mw»zu=1,x5= (7.37'+9.+"3 = 1
D-4 2
Equokion &) Gine : y-y = r;\\(x-%\\ ekp‘gv\\keﬂ

oodiunk e

S
(-t

=1
m

\5—‘_!2 - l‘}f (%-2)

= WK -2
2T %
29



Question 9 continued

(D P\NQ WI\dQX = f \j 0\‘)(
LWL .

2
Q=J; a(x) dn
- jnxz r2 + %  dx
° LSk

= XS +‘Zx-\-5\nlx—u|f;

= 23 +20@) + 5n|-2] -0-0 -5\n|-4]
3

= 7_;% + SIn2 —S\n 4y

06 RULES » & log (C) = (oo b(c"‘)

2?? +5\(2) - sw(2)?)

=20 +5W(@) -0 W) = 20 -5W()
3 Z
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Question 9 continued

(Total 14 marks)

Q9

END

TOTAL FOR PAPER IS 75 MARKS
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